
I

I .

On the Implementation of Kernel Numerical Algorithms
for Computational Fluid Dynamics on Hypercubes

Tony F. Chan

November 1986

Resrarch Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 86.23

(NASA-CR-187236) ON THE TMPLEMENTATION OF N90-71336

KERNEL NUMERICAL ALGORITHMS FOR
COMPUTATIONAL FLU10 DYNAMICS ON HYPERCUBES
(Research Inst- for Advanced Computer Science) 12 p 00/34 0 2 9 5 3 9 3

Uncl as

Research Institute for Advanced Computer Science

I ’

I
i .

On the Implementation of Kernel Numerical Algorithms
for Computational Fluid Dynamics on Hypercubes

Tony F. Chan

November 1986

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 86.23

On the Implementation of Kernel Numerical Algorithms
for Computational Fluid Dynamics on Hypercubes

Tony F. Chan'

RIACS Technical Report 86.20
November, 1986

'This work is supported by the Research Institute in Advanced Computer Science, NASA Ames Research Center and the
Department of Energy under Contract DE A 0 2 81ER 10996 while the author is on sabbatical leave from Yale University. Current ad-
dress: Dept. of Mathematics, UCLA, 405 Hilgard Av.. Los Angeles, CA 90024. ?his paper is prepared for the proceedings of the
Second Conference on Hypercube Multiprocessors, Knoxville, Tennessee, Sepember 29 - October 1,1986.

Hypercube CFD 1

Abstract: We discuss some issues that arise in the implementation of numerical algo-
rithms for computational fluid dynamics (CFD) on multiprocessor systems such as hyper-
cubes. We identify several important kernel numerical algorithms from CFD that map
well onto the hypercube architecture. We emphasize the importance of considering the
optimal mapping for a collection of kernel algorithms used in an application program
rather than just on individual optimal mappings. Several examples illustrating the trade-
offs between rearranging data to fit a particular kernel algorithm and using suboptimal
mappings will be discussed.

1. Introduction

The field of computational fluid dynamics (CFD) has been a primary motivating force
behind the recent interest in parallel computing. CFD demands lots of compute power,
primarily due to the presence of wide scales of physical phenomenon that need to be
modelled. Since CFD applications are already stretching the limits of sequential process-
ing, many people believe that the computing power needed for major advances in CFD
can only be delivered by parallel processing.

This trend has already been recognized for many years at CFD research centers such as
the NASA Ames Research Center, which developed one of the earliest parallel comput-
ers, the U I A V IV. Recent developments there include the NAS project (Numerical
Aerodynamics Simulation) one of whose goals is to bring the most powerful supercom-
puter at any given time to applications in CFD. Currently, it operates a 4 processor Cray
2 system. Looking into the future, NAS sees computers with massive parallelism. With
this trend, the interplay between architecture and algorithms becomes more important.
For this reason, the Research Institute for Advanced Computer Science (RIACS) has ini-
tiated a research program to bridge the gap. Efforts so far include studies of CFD on the
MPP parallel computer and the Intel iPSC hypercube multiprocessor computer by John
Bruno [2,3] and a workshop headed by Jack Dennis on the use of data flow architectures
in ~m [i].

This article describes a preliminary study on the use of hypercubes to CFD. Our
approach here is to identify and study kernel algorithms in CFD in detail in order to pro-
vide a scientific basis for implementation into future production codes. A main issue we
study is the optimization of load balancing and communication cost by careful mapping
of data (domain). We put a special emphasis on selecting optimal mappings for a collec-
tion of algorithms used in a typical application rather than on mappings for individual
kernels. We also study the tradeoffs between the cost of using a suboptimal mapping and
that of rearranging the data to obtain an optimal mapping. Several examples from CFD
will be used to illustrate our points.

2. Kernel Algorithms in CFD

CFD can be classified by the various versions of the Navier Stokes equations that it
solves: e.g. incompressible flows, compressible flows, transonic flows, turbulence model-
ling etc. Due to the different mathematical characteristics of the governing equations,
these variants usually require different computational algorithms for their solutions. In

Hypercube CFD 2

this section, we identify some of the commonly used kernel algorithms in each case.

First of all, most methods require some sort of nearest neighbor mesh ("-mesh) compu-
tations defined by the discretization stencil, such as for the computation of the residual
and in relaxation methods.

In compressible flows, alternating direction implicit methods (ADI) are popular. These
methods require the solution of block tridiagonal linear systems in each coordinate direc-
tion at each time step. A representative code is ARC3D developed at NASA Ames [191.

In incompressible flow, there is usually a Poisson equation to be solved at each time step
(for the pressure in the primitive variable formulation and for the stream function in the
stream function vorticity formulation), which often consumes most of the computation
time. Thus a fast Poisson solver is an important kernel for these applications.

Spectral methods are becoming more widely used in CFD. In turbulence modelling [181,
they are particularly predominant. Combined with their applications to other kernels
such as fast Poisson solvers, this makes the fast Fourier transform (FFT) an extremely
important kernel for CFD.

Transonic flows are usually modelled by equations which have different type (hyperbolic
or elliptic) in different regions of the computational domain. Since the location of these
type transitions depends on the solution itself, the discretization may change during the
solution procedure. This feature leads to iterative methods (usually relaxation methods)
which makes successive sweeps across the domain to update the solution. These iterative
methods are often accelerated by techniques such as multigrid and preconditioned conju-
gate gradient methods, which are finding increasing application in other areas of CFD as
well. The most well-known codes in this area are perhaps the series of codes starting
from FL052 by A. Jameson [131. Recent versions of this code use the AD1 method with
multigrid acceleration.

3. Mapping of Algorithms to Hypercube Architecture

Part of the reason for the popularity of the hypercube architecture is the fact that many
other topologies, such as meshes, trees, pyramids and butterflies, are embeddable in the
hypercube topology [21]. By this we mean the graphs representing these other topolo-
gies can be mapped onto the binary n-cube graph with small dilation (the relative
increase in the distance between vertices) and expansion (the relative increase in the total
number of vertices) [20]. In practice, this implies that computations involving data flow
graphs taking the form of the previously mentioned topologies can be carried out with
minimum communication overheads on binary n-cube computers. In this section, we
shall briefly discuss the problem of mapping some of the kernel algorithms in CFD
identified in the last section onto the hypercube. These include FFT. (butterfly), cyclic
reduction (tree), multigrid (pyramid) and computations on "-meshes.

Hypercube CFD 3

3.1. FFT

We shall restrict our discussions to the radix-2 FFT algorithm. The data flow graph for
the FFT is usually referred to as the "butterfly". Let the array elements be x j , where the
index j ranges from 0 to 2d-1. These array elements are updated at each of d stages of
the computatian. At the i-th stage of the computation, the array element with index j
must communicate with another element with index k , whose binary representation
differs from that of j in the i-th most significant position. On a hypercube, the natural
mapping is to map X j to node number j of the cube [9]. To be mathematically precise,
let M tl + N be the class of mapping functions, where I denotes the set of indices of the
array elements and N the set of node numbers of the hypercube. Then the FFI' mapping
f E M is given by

With this mapping, it is easy to see that at every stage of the computation, the necessary
communication will be between neighboring nodes. Moreover, all such communications
at a given stage can be carried out in parallel. Each stage can be viewed as "collapsing"
the hypercube in one of its coordinates. In fact, the hypercube is isomorphic to the
butterlly of the same dimension.

Note that after the completion of the forward transform, the data elements are not
arranged in the natural order. Rather, they are in what is known as bit-reversed order.
This is unimportant if the inverse transform of the data array is to be computed next,
perhaps after some computations on the transformed array itself, which is typical in many
applications. If needed, the array elements can be permuted into natural order in d steps
with only nearest neighbor communication [23].

3.2. "Mesh

* Annthpr --*"--"A COF~EKX d a 2 fb~ p ~ h is the n e ~ ~ ~ t fieighboi p.TJ> i i ~ s h , which ~ ~ i i i i

naturally in the solution of partial differential equations. We shall limit our discussion
here to one dimensional meshes, since higher dimensional meshes can be easily built
from tensor products of one dimensional ones[7,21]. If the array elements are denoted by
X j , then the NN-mesh graph with the X i ' s as vertices contains all edges connecting a
given vertex X j with its nearest neighbors on the mesh. In one dimension, these are the
two vertices Xj-1 and X j + l . (Throughout this paper, all indices are to be taken modulo
2d, where d is the dimension of the hypercube.)

It is well-known that the NN-mesh graph with 2d vertices can be mapped into a d -
dimensional hypercube with no dilation or expansion via Gray codes. The natural map-
ping rn EM for the NN-mesh to a d -dimensional hypercube is

where g j is the j-th member of a d-dimensional Gray code. It is important to note that
Gray codes are not unique but any d-dimensional Gray code will work here.

Hypercube CFD 4

3.3. Multigrid

Multigrid algorithms can be viewed as methods for accelerating relaxation methods by
performing extra iterations on a hierarchy of coarser grids in addition to the fine grid on
which the solution is sought. On the finest grid, only NN-mesh computations are per-
formed and therefore the tensor product Gray code mapping discussed in the last section
can be used effectively. On the coarser grids, however, NN-mesh computations require
communication between grid points that are increasingly becoming farther apart. Thus a
little bit more care must be used to map the grid onto the hypercube so that coarse grid
communications can be made efficient. In [6] , it is shown that, if the grid coarsening fac-
tor is 2, then by using a special Gray code (namely the binary reflected Gray code
(BRGC)) to map the finest grid to the hypercube, all coarse grid communications are
exactly distance 2 apart (which is optimal), independent of the size of the grid or that of
the hypercube. We emphasize that this is a special property of the BRGC and does not
hold for many other Gray codes. Thus, the same mapping which is optimal for NN-
meshes is also optimal for multigrid.

3.4. Cyclic Reduction

Odd Even Cyclic Reduction (CR) is one of the most efficient parallel algorithm for solv-
ing tridiagonal systems [121. In the first stage of the algorithm, the odd numbered equa-
tions are used to eliminate the odd numbered unknowns in the neighboring even num-
bered equations, resulting in a new tridiagonal system of half the original size governing
only the even numbered unknowns. Subsequent stages are recursive applications of the
same principle. If the size of the system n is a power of 2, this leads to one equation in
one unknown after log2n stages, which can be solved trivially. This is followed by a
backsolving phase reversing the data flow of the forward elimination phase. The com-
munication requirement is similar to the multigrid algorithm: starting from NN-mesh at
the first stage, communications are between nodes that are at increasing powers of 2
apart. Therefore, it is easy to see that if the BRGC is used to map the equations to the
hypercube, then all communications in subsequent stages are exactly at distance 2 apart
[151, which is optimal.

4. Suboptimal Mappings Versus Data Rearrangement

In the last section, we saw that the optimal mapping for many kernel algorithms in CFD
are easy to define and implement. However, what is often not appreciated is the fact that
different algorithms require different mappings. Moreover, in applications where the
same data set must be operated on by more than one algorithm, situations may arise
where the optimal mappings for the individual algorithms are not compatible with one
another. What is ideal for one could be disastrous for the others. In such situations, we
have two alternatives: rearrange the data between algorithms or use only one mapping
which may be suboptimal for some of the algorithms. The suboptimality could be either
due to communication delays or to imperfect load balancing. The tradeoff between these
two approaches depends on the relative frequency each algorithm in the collection is exe-
cuted. In this section, we shall illustrate these issues by several examples in CFD.

Hypercube CFD 5

4.1. The Incompatibility Of the FFT and the NN-Mesh Mappings

The most natural mapping for the FFT algorithm, namely f in equation (I), turns out to
be inefficient for NN-mesh computations. If the data array xj is mapped onto the hyper-
cube using the FFT mapping f, then a nearest neighbor computation on the same data
array requires communication over a distance d (equal to the diameter of the hypercube)
for some nodes, e.g. between node 2d-1-1 and node 2d-1. Thus, as far as the NN-mesh
computation is concerned, the FFT mapping f is the worst possible mapping. For higher
dimensional hypercubes, this may cause a significant reduction in the efficiency of algo-
rithms using the nearest neighbor data flow graph.

On the other hand, the NN-mesh mapping rn in equation (2) can be made suitable for
FFI' computations. To see this, note that the FFT butterfly involves pairs of array ele-
ments separated by strides of diminishing powers of 2 and thus if the array elements are
mapped to the hypercube using a BRGC, then the communications occur between nodes
at most a distance two apart. This is optimal because a distance of one would create a
cycle of odd length in the hypercube (the power of 2 stride plus the nearest neighbor con-
nection), which is impossible [21].

Alternatively, one can consider rearranging the data before the execution of each algo-
rithm according to the most natwal mapping for that algorithm, especially if the algo-
rithm is to be executed many times. It turns out that one can convert from a BRGC NN-
mesh mapping to a FFT mapping (and vice versa) with d-1 nearest neighbor exchanges
15,151, which is comparable with the communication cost of one FFT computation. Thus
if many FE;Ts are to be performed, then it may pay to carry out the conversion to the
optimal FFI' mapping. For a detailed analysis of which mapping is best for a particular
application and the tradeoffs between rearranging data and using a suboptimal mapping,
the reader is referred to [5].

Applications employing both the FFT and the NN-mesh data flow graphs are very corn-
mzr? i~ CFD. A i t n i t 6ifferz;;ze discrctizition of the Navier Stokes equation often pro-
duces a nearest neighbor stencil. Thus the "-mesh mapping is natural for computation
of residuals. On the other hand, if a spectral method or a fast Poisson solver is used to
solve the difference equations, then the FFT mapping is called for.

43. The Parallel Exchange Multigrid Algorithm

Sometimes it may be beneficial to rearrange data even between different parts of the
same algorithm. In the parallel implementation of multigrid methods on hypercubes as
described in Section 3.3, by using a BRGC NN-mesh mapping of the finest grid, com-
munication on coarser grids are at distance exactly 2 apart. If many NN-mesh operations
are to be performed on a coarse grid, then one can consider rearranging the data on it to
reduce this distance to 1. In [6], it is shown how this can be achieved by a simple
exchange communication between certain neighboring nodes on the fine grid before
starting computations on the coarse grid. A similar exchange must be used when coming
back from a coarse grid to a fine grid. This remapping thus pays if more than 2 smooth-
ing sweeps are perfoxmed on the coarse grid. See [8] for more details on the implemen-
tation of this algorithm.

Hypercube CFD 6

4.3. Transpose in AD1 Methods

Another example of the tradeoff between using a suboptimal mapping and rearranging
data to an optimal mapping is in the parallel implementation of Alternating Direction
Implicit Methods (ADI) on hypercubes [16]. We shall restrict our discussion to two
dimension regions. Each iteration of the AD1 method consists of solving independent tri-
diagonal systems on grid lines in each of the two coordinate directions. If the grid is par-
titioned into groups of grid lines along one coordinate direction and each group mapped
onto the hypercube according to the BRGC, then the solution of the tridiagonal systems
in this chosen direction are all within the same processor and requires no communication.
The solves in the other direction can be solved by the cyclic reduction algorithm
described in Section 3.4, with communication between processors at distance 2 apart
after the first reduction stage. By a similar exchange operation as in the multigrid algo-
rithm described earlier in Section 4.2, this distance can be reduced to one [15]. By a
more costly transpose operation of the grid, this distance can be further reduced to zero
(solves within the same processor). Which alternative is best is still an open research
problem and probably depends on the sizes of the grid and the hypercube and the relative
cost of computation and communication [11,17,22].

4.4. Load Balancing in Parallel FFT

The previous examples show situations where remapping can reduce the communication
cost of an algorithm. Sometimes, remapping can improve load balancing. Consider the
parallel implementation of the Gentleman-Sande version of the FFI' [24]. The original
sequence is divided into contiguous blocks and each block mapped onto the processors of
the hypercube using the FFT mapping f discussed earlier. At each stage, two kinds of
computations must be performed: (1) the sum of two intermediate transformed values
and (2) their difference, multiplied by appropriate powers of certain roots of unity. In the
early stages, these two computations are performed on neighboring processors requiring
communication whereas in the latter stages, they are performed in the same processor
requiring no communication. In [101, it is pointed out that in the early stages the compu-
tations are not perfectly balanced: some processors must compute (or look up) the roots
of unity and perform a complex multiplication whereas others do not. This imbalance
can be eliminated by permuting the data at every stage so that only local FFTs of the
same size are performed in each processor. For more details, the reader is referred to
[lo].

4.5. Particle in Cell Methods

Another example of remapping to improve load balancing is in certain parallel imple-
mentation of particle in cell methods [4]. These methods typically consists of two stages:
the solution of a Poisson equation for the field on a regular grid and then "particle push-
ing" of the individual particles. The Poisson equation is usually handled by a "fast solver"
which prefers a regular mapping, e.g. the tensor product BRGC NN-mesh mapping.
However, if the particles are distributed nonuniformly in the computational domain, then
the particle pushing phase prefers a nonregular mapping which would produce better load

Hypercube CFD 7

balancing in the sense of having roughly the same number of particles in each processor.
Again the tradeoff is between the cost of remapping and that of using a suboptimal map-
ping.

5. Conchding Remarks

A typical CFD program contains several kernel algorithms working on the same data.
One of the main purposes of this article is to emphasize the need to go beyond studying
the optimal implementation of the individual algorithms and look at the whole collection
as a whole. The reason is simply that what is best for one algorithm may not be optimal
for the others. Very often, a remapping of the data to perfectly suit an algorithm should
be considered. The tradeoff is between the cost of the remapping and the benefits of
reduced communication and better load balancing. We have shown in this article several
such examples arising naturally in CFD applications. The optimal choice of mapping
depends on many factors, such as the frequency the algorithms are to be executed and the
ratio of the arithmetic speed to the communication speed.

Reference

[l] G.B. Adams, R.L. Brown, P.J. Denning, Report on an Evaluation Study of Data Flow
Computation, RIACS Technical Report 85.2, Research Institute in Advanced Computer
Science, 1985.

[2] J. Bruno, Final Report on the Feasibility of Using the Massively Parallel Processor
for Large Eddy Simulation and other Computational FLuid Dynamics Applications,
RIACS Technical Report 84.2, Research Institute in Advanced Computer Science, 1984.

[3] J. Bruno, Report on the Feasibility of Hypercube Concurrent Processing Systems in
Computational Fluid Dynamics, RIACS Technical Report 86.7, Research Institute in
Advanced Computer Science, March 1986.

[4] C. Catherasoo, The Vortex Method on a Hypercube, paper presented at the 2nd
Conference on Hypercube Multiprocessors, Knoxville, Tennessee, September 29 -
October 1, 1986.

[5] T.F. Chan, On Gray Code Mappings for Mesh-FFTs on Binary N-Cubes, RIACS
Technical Report 86.17, Research Institute in Advanced Computer Science, September,
1986.

[6] T.F. Chan, Y . Saad, Multigrid Algorithms on the Hypercube Multiprocessor, IEEE
Trans. on Comp., Nov., 1986, pp. 969-977.

[7] T.F. Chan, Y. Saad, M.H. Schultz, Solving Elliptic Partial Differential Equations on
Hypercube Multiprocessors, Proceedings of 1 st Conference on Hypercube Multiproces-
sors, ed. M. Heath, pp. 196-210, SIAM, Philadelphia, 1986.

Hypercube CFD 8

[8] T.F. Chan, R. Tuminaro, Implementation of Multigrid Algorithms on Hypercubes,
RIACS Technical Report 86.30, Research Institute in Advanced Computer Science,
November, 1986. To appear in the proceedings of the 2nd Conference on Hypercube
Multiprocessors, Knoxville, Tennessee, September 29 - October 1 , 1986.

[9] G. Fox, S. Otto, Decomposition of Scient$c Problems for Concurrent Processors,
Physics Today, May, 1984.

[101 G. Fox, W. Furmanski, Some Highlights of Hypercube Research at Caltech, paper
presented at the 2nd Conference on Hypercube Multiprocessors, Knoxville, Tennessee,
September 29 - October 1, 1986.

[113 C.T. Ho, S.L. Johnsson, F. Saied, M.H. Schultz, The Three Dimensional Wide Angle
Wave Equation, Tridiagonal Systems and the Intel iPSC, paper presented at the 2nd
Conference on Hypercube Multiprocessors, Knoxville, Tennessee, September 29 -
October 1, 1986.

[121 R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger Ltd., Bristol,
1981.

[131 A. Jameson, Solution of the Euler Equations for Two Dimensional Transonic Flow
by a Multigrid Method, Appl. Math. and Comp., vo1.13, pp.327-355, 1983.

[141 L.S. Johnson, Odd-Even Cyclic Reduction on Ensemble Architectures, Research
Report YALEUDCSRR-339, Yale Univ., Dept. of Comp. Sci., Oct. 1984.

[151 L.S. Johnson, Communication EfJicient Basic Linear Algebra Computations on
Hypercube Architecture, Research Report YALEUDCSRR-36 1, Yale Univ., Dept. of
Comp. Sci., Sept. 1985.

[161 L.S. Johnson, Y. Saad, M.H. Schultz, Alternating Direction Implicit Methods on
Multiprocessors, Research Report YALEUDCSRR-382, Yale Univ., Dept. of Comp.
Sci., Oct., 1985.

[17] D. Lim, R.V. Thanakij, Alternating Direction Implicit Methods on a Hypercube,
paper presented at the 2nd Conference on Hypercube Multiprocessors, Knoxville,
Tennessee, September 29 - October 1, 1986.

E181 R.S. Rogallo, An ILLIAC Program for the Numerical Simulation of Homogeneous
Incompressible Turbulence, NASA Document No. NASA TM-73,203, 1977.

[191 T.H. Pulliam, J.L. Steger, Implicit Finite DifSerence Simulations of Three Dimen-
sional Compressible Flow, AIAA J., vol. 18, p.159, 1980.

[20] A. Rosenberg, Data Encoding and Their Costs, Acta Inform. 9 (1978), pp.273-292.

[21] Y. Saad, M.H. Schultz, Some Topological Properties of the Hypercube Multiproces-
sor, Research Report YALEU/DCS/RR-428, Yale Univ., Dept. of Comp. Sci., October,
1985.

Hypercube CFD 9

[22] F. Said , ADZ Methou3 for Schrodinger's Equations on Hypercubes, paper presented
at the 2nd Conference on Hypercube Multiprocessors, Knoxville, Tennessee, September
29 - October 1,1986.

[23] J. Salmon, private communication. See also Chapter 8 of the book "Solving Prob-
lems on Concurrent Processors" by G. Fox et al, to be published.

I ,

[24] P. N. Swarztrauber, Multiprocessor FFTs, paper presented at the International
Conference on Vector and Parallel Computing, Loen, Norway, June 2-6, 1986.

